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Abstract— The modified spectral-domain approach is applied

to study the propagation characteristics of high temperature
superconducting microstrip lines whose signal strip and ground

plane are of arbitrary thickness. In this study, numerical results
for effective dielectric constant, attenuation constant, and strip
current distribution are presented to discuss the effects due to fre-
quency, temperature, strip thickness, and substrate loss tangent.
In particular, the conductor and dielectric attenuation constants
of superconducting microstrip line are depicted separately to

discuss the mechanism of the line losses. A comparison with
published theoretical and experimental results is also included

to check the accuracy of the new approach’s results.

I. INTRODUCTION

H IGH-TEMPERATURE superconductors (HTS) are

characterized by low surface resistance and frequency-

independent penetration depth. These properties make them

attractive in the development of some special microwave

devices. As a result of low surface resistance and hence

low loss, the implementation of high-Q resonators [1], [2],

long delay lines [3]–[5], and low-loss filters [6], [7] with a

sharp frequency response becomes possible. The frequency-

independent nature of penetration depth also leads to lower

distortion in a HTS transmission line [8]. The above merits and

slow wave characteristics associated with the HTS thin-film

technology make it possible to manufacture a compact-size

circuit in microwave systems.

The HTS microstrip lines have been characterized by using

the simplified quasi-TEM approaches. In [9], the phenomeno-

logical loss equivalence method was proposed to analyze the

line whose strip thickness was in the order of the penetra-

tion depth. The slow wave propagation characteristic along

a superconducting microstrip line was investigated by the

spectral-domain technique [10] in which the superconduct-

ing strip was modeled by an equivalent surface impedance

when the strip was either much thinner or much thicker

than the penetration depth. By treating the superconducting

strip as a system of coupled strip lines, Sheen et al. [11]

have utilized the quasi-TEM approach to find the current

distribution, resistance, and inductance matrices. However,

the above-mentioned methods have the assumption of small

Manuscript received October 6, 1994; revised October 2, 1995. This work
was supported by the National Science Council of Taiwan, Republic of China,
Grant NSC 83-0404-E-O02-044.

The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan 10617, Republic of China.

Poblisher Item Identifier: S 0018-9480(96)00466-8.

longitudinal field components and are not applicable in the

higher frequency regime.

Several full-wave analyses have recently been proposed

to deal with the HTS transmission lines [12]–[19]. The

techniques of finite-difference [12] and mode-matching [13]

were applied to investigate the microstrip lines and coplanar

waveguides, but they can only handle the bounded structures.

In [14] and [15], the spectral-domain immittance approach

(SDIA) together with the complex boundary condition was

proposed to analyze the microstrip structure with isotropic or

anisotropic substrates. This SDIA is limited to the structures

whose strip thickness, in comparison with the penetration

depth, is very thin or very thick. By representing the lossy

strip by an equivalent impedance surface, Van Deventer et

al. [16] have used an integral equation approach to treat

the shielded HTS microstrip line; however, this surface was

characterized by a frequency-dependent impedance which

was derived from a quasi-TEM analysis of the fields and

currents inside the superconducting strip. A space domain

boundary integral equation method [ 1’7] was applied for a

full-wave loss analysis of coplanar stripline and microstrip

line configurations with Au and YBCO strips. Lee et al.

[18], [19] further employed the spectral-domain volume

integral equation to analyze the superconducting microstrip

lines with perfectly conducting ground planes. In [18], an

integral equation formulation was proposed for an anisotropic

superconducting strip and then solved by the Galerkin’s

method with rooftop basis functions. In [19], single and

coupled superconducting microstrip lines on anisotropic

substrates were investigated by the equivalent surface

impedance approach.

In this study, the newly proposed modified spectral-domain

approach [20] is applied to analyze the superconducting mi-

crostrip line with arbitrary thickness in signal strip and ground

plane. Here, all three components of sttip current with two-

dimensional dependence are included and the 10SSYeffects

of both superconductors and substrates are investigated in

detail. To improve the computational efficiency, suitable basis

functions such as piecewise linear and penetration-depth de-

pendent exponential bases are chosen for the unknown strip

current so that the integral equation may be simplified by

analytically integrating it along one coordinate variable. To

provide more information for superconducting microstrip lines,

some interesting results such as a comparison of propagation

characteristics for superconductor, normal conductor, and per-

fectly electric conductor lines and a separate discussion of

conductor and substrate losses are also included.
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II. FORMULATION

The superconducting microstrip line (Fig. l(a)) under con-

sideration consists of a signal strip of width w, thickness

t, and a ground plane of thickness b. Both signal strip

and ground plane are made of superconductor of complex

conductivity u. This line has a substrate whose dielectric

constant and loss tangent are C. and tan 6, respectively.

With the field dependence e~tWt-~zzJ assumed throughout the

analysis, the superconductor may be characterized by the two-

fluid conductivity model [21]

()T4 1~=rn — .j—
TC

T ~ T.. (1)
wpl)A2 ‘

Here on is the normal state conductivity at critical temperature

TC

“J% (2)

is the penetration depth at temperature T, and A. is the one

at O K. Although the high-Tc superconductor is considered

anisotropic, the effect of this anisotropy may be neglected in

the characterization of a microstrip transmission line [1 8].

To solve this problem by the modified spectral-domain

approach [20], the equivalent structure shown in Fig. 1(b) is

investigated. In this equivalent problem, the signal strip region

$2 is replaced by the free space and the equivalent current

J(r) = aE(r). Then the relationship between the electric field

E(r) and the current density J(r’) in the region Q may be

written as

E(r) =
/

G(r – r’) ● J(r’) dr’ = ~J(r). (3)
n

Here, G is the dyadic Green’s function for the multilayer

structure as shown in Fig. 1(c). It should be emphasized that

the superconducting ground plane is now regarded as a lossy

layer of parameters o and b therefore the effect of this lossy

ground plane may be discussed by this Green’s function. Some

detail of the Green’s function is presented in the Appendix.

By weighting both sides of (3) by an arbitray function

w(r) and then integrated over fl, one may get a homogeneous

integral equation for the unknown strip current J(r)

1J(z, y) dyd~ = 0.(4)
● if(z’, y’) dy’ dz’ – —

n

With the parameters (b, a) of superconducting ground plane

absorbed in the Green’s function, the only unknowns are

the current distributions within the signal strip which can be

expressed as

Here (rrz + 1) x-dependent and (n+ 1) y-dependent bases are

included in the approximation of the strip current. It should

Y

t

(a)

Y

t J=a E

(b)

Y

t

(c)

Fig. 1. (a) Cross section of superconducting microstrip line, (b) equivalent
problem in formulation, and (c) layer structure for deriving Green’s function.

be pointed out that to get a more accurate result, all three

components of strip current should be included in the analysis.

In this study, the Legendre polynomials are chosen as the

x-dependent bases for the unknown strip current J

(6)

For simplicity, the following piecewise linear functions are

chosen as the y-dependent bases for J

4:(Y) = 4~(Y) = 4~(Y) = A(Y)

{

y–a~–~
— Al_l<y<A~A>

— A~+I–y— — Al<y<Al+~A)
(7)

o, otherwise

where Al = 1A and A = t/n. To better represent the

exponential-decay behavior of strip current inside the su-
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perconductor, we alternatively use the following exponential

functions for the y-dependent bases, especially in the higher

frequency regime

(t(v)= @j(u)=&(Y)

{
f=d-(+ +j+)b], 1>0

(8)
= exp[–(+ +j$)l(y – t)], 1<0.

Here 6. J* is the conventional skirt depth, and the

terms 1 ~ O‘and 1 < 0 describe the current distributions over

the lower and upper sides of signal strip, respectively.

By applying the Fourier transformation

A(k.) =r A(~)e-~k*” dx
—W

(9)

and Parseval’s theorem with respect to x variable to (4), then

analytically integrating it with respect to y variable, one may

finally yield the governing equation in the spectral domain

/

‘x

ti(kz)[Z(kz,/%=)– ~(kz)]~(kz)dkz = O. (lo)
—m

Note that the y-dependence form of the spectral-domain

Green’s function G is a linear combination of exp(j~Oy)

and exp(j~oy’), where ,60 is independent of y or y’ (see

Appendix). By a proper choice of the y-dependent bases

such as (7) or (8), the y-dependent integration in (4) may

be analytically integrated and this implies that only single

integration with respect to k. is involved in the final spectral-

domain (10). Thus, it can use the conventional technique of

spectral-domain approach to find the phase constant (3 and

attenuation constant a.

To derive the matrix equation for the propagation constant

from the spectral-domain (10), the Galerkin’s method is used,

in which the bases for w (z, y) are the same as those for

J (z, y). Then the propagation constant kZ = ,6 – ja can be

found by solving this homogeneous matrix equation.

III. NUMERICAL RESULTS

Numerical results such as effective dielectric constant c,ff =

(~/ko)2(k~ = ti2#oco), attenuation constant a, and longitudi-
nal current distributions J, over signal strip are investigated

in detail.

Regarding the convergence behavior with respect to the

expansion in (5) and the proper choice of the y-dependent

bases in (7) and (8), one should notice the following thickness

criterion on the signal strip. If the signal strip thickness t is

greater than three times of the penetration depth A, the number

(n + 1) of the y-dependent piecewise linear bases will be

greater than that of the exponential bases, both to give same

accuracy, Because the CPU time is directly proportional to

the square of the number of the y-dependent bases, the use of

exponential bases is essential in reducing the computing time

in higher frequency. To get convergent results for ceff and

a, we use seven Legendre polynomials for the $-dependent

bases; but we use seven piecewise linear y-dependent bases
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Fig. 2. Comparison of effective dielectric constant eeff and qnality factor Q

with those of [22].

when t < 3A and three exponential y-dependent bases when

t > 3A.

The effective dielectric constant Ceff and quality factor

Q(=P/2a) based on the modified spectral-domain approach
(MSDA) are presented in Fig. 2 and are compared with

the theoretical and measured ones from the spectral-domain

volume integral equation method [22]. Agreement with other

works (not shown) and better fitting with measured values

of [22] confirm the validity of the proposed MSDA for

superconducting microstrip lines.

Comparison among characteristics of superconducting (SC),

normal conducting (NC), and perfectly electric conducting

(PEC) microstrip lines is shown in Fig. 3. Because the field

penetration inside superconductor is independent of frequency

as described by the penetration depth A in (2), both SC and

PEC lines show less material dispersion than the NC line

for frequency less than 10 GHz. The difference in eeff=curves

between SC and NC lines is not negligible when the operating

frequecy is lower. In the higher frequency range, all SC, NC,

and PEC lines have similar dispersion characteristics because

field distributions are now almost identical. Superconducting

line is essentially nondispersive in lower frequency range but

it will be dispersive like the normal conducting line due to

the similar field distributions inside the substrate at higher
frequency. By the similarity of <em-curves for both SC and

PEC lines, the superconducting line may easily be analyzed by

regarding its conductivity first as infinity to get the effective

dielectric constant and the fields, and then use these fields

and the power-loss method [23] to approximately calculate the

attenuation caused by the superconductors. Fig. 3 also presents
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Fig. 3. Effective dielectric constant Ceff and attenuation constant a for
superconducting (SC), normal conducting (NC), and perfectly electric con-

ducting (PEC) lines. SC(YBCO): rJ~ = 7.46 x 106 (S/m), AO = 0.18 pm,
tanb = 3 x 10–5, and T = 77 K, NC (copper): conductivity = 5.76x 107

(S/m), tand = 3 x 10-4, and ‘T = 300 K.

the low loss property of SC line. The nearly straight line

behavior in the a-curve helps us to predict the attenuation

characteristics at any frequency. For frequency higher than

12 GHz, SC and NC lines have nearly the same effective

dielectric constant but the attenuation constant of NC line is

almost two orders of magnitude larger than that of SC line.

The dispersion and attenuation properties of superconduct-

ing microstrip line for various strip thickness t are depicted in

Fig. 4. Both eeff and ~ decrease as strip thickness t increases;

the former is due to the increase of the field distribution inside

the air region and the latter due to the decrease of the line

kinetic resistance [1 1].

Fig. 5 shows the effect of temperature on C,ff and a with

strip thickness t as parameters. Variation in C.ff and a is small
for the normalized temperature T/TC ranging from 0.05 to

0.7. The temperature dependence of both e,ff and a would be

reduced by increasing the strip thickness. Hence, using thicker

superconducting strips or lower temperature may reduce the

characteristics fluctuation due to temperature variation.

The attenuation due to lossy substrate is important in

superconducting lines and will be discussed in Figs. 6–8. The

effect of increasing loss tangent tan 8 is represented in Fig. 6.

Note that the changing rate, with respect to frequency, of the

attenuation due to conductors only (tan 6 = O) is larger than

that due to both conductors and dielectrics (tan 6 = 3 x 10–3,

3 X 10–4, and 3 X 10–5).
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Fig. 4. Effective dielectric constant ●eff and attenuation constant @ versus
frequency with strip thickness t as parameters.
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Fig. 5. Effective dielectric constant e.ff and attenuation constant a versus
normalized temperature T/T. with strip tlickness t as parameters.
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Fig. 6. Attenuation constant
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Flg.7. Conductor attenuation constant CIC and dielectric attenuation constant ad versus frequency with temperature ‘T as parameters.

Now we separately discuss the attenuations from con-

ductor loss and dielectric loss. The conductor attenuation

constant ac of superconducting line is calculated from the

lossless-substrate structure with tanf = O. The dielectric

attenuation COnStRtIt Q iS calculated frOm the difference

between the attenuation Q for the lossy-substrate structure

with tan 8(= 3 x 10–5) and the one a. for the lossless-

substrate structure with tan 8 = O. Here in evaluating the

dielectric attenuation constant ad, the field distributions of the

line with lossless substrate (tan 6 = O) are assumed to be

identical with those of the same line structure but with 10SSY

substrate (tan 6 = 3 x 10–5). Fig. 7 shows cw and ad versus

frequency with operating temperature T as parameters. As

frequency increases, the a.-curve increases more steeply than

the CS!&cUrVe such that CYCis kger than %i for freqttenCy above

8 GHz at 77 K. The a.c- and W-cUrVes versus normalized

temperature with frequency as parameters are also shown in

Fig. 8. The dielectric attenuation constant CSdis independent

of temperature but the conductor attenuation constant CIC

increases rapidly as temperature increases. As expected, the

attenuation constant of superconducting microstrip line is

dominated by the dielectric loss except at higher frequency

and higher temperature.

The longitudinal current distributions on the signal strip of

superconducting (SC) and normal conducting (NC) microstrip

lines are shown in Fig. 9. Here in computing the strip cur-

rent, the piecewise linear functions (7) are adopted as the

y-dependent bases. The total current carried by the strip is
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Fig.9. Longitudinal current distributions on signal strip of superconducting

(SC) and normal conducting (NC) lines (at y = O).

assumed to be 30 mA and the superconducting current density

must be less than the critical value JC (= 1010 A/m2 ) for

maintaining the superconducting state. As excepted, the edge

enhancement behavior is found for the longitudinal current J=

with respect to z-coordinate, but the edge current is finite

instead of infinity [24]. Even using the thinner strip with

thickness t = 0.08 pm, the maximum superconducting current

density at the strip edge is still smaller than J.. Because }/t

is about 3, the longitudinal current distributes uniformly in

the y-direction (not shown). Note that the current distribution

over SC strip is independent of frequency from 1 GHz to

100 GHz, however the current distribution over NC strip

shows dependence on frequency as expected.

IV. CONCLUSION

The modified spectral-domain approach has been applied to

analyze the superconducting microstrip line with layer struc-

ture in which the thickness of signal strip and ground plane

are arbitrary. Numerical results such as effective dielectric

constant teff, attenuation constant a (especially the conductor

attenuation constant aC and dielectric attenuation constant

ad), and longitudinal strip current distribution have been

presented to discuss the effects on propagation characteristics

due to variations in frequency, temperature, strip thickness,

and substrate loss tangent etc.

Some observations are worthy of mention. Similar ceff-

curves for normal conductor, superconductor, and perfectly

electric conductor lines are observed at higher frequency, but

the difference in ~,ff-curves between normal conductor and

superconductor lines is not negligible at lower frequency.

A separate discussion of the conductor and substrate losses

further reveals that the conductor attenuation constant a. may

be greater than the dielectric attenuation constant ad at higher
frequency and higher temperature. The longitudinal current

density on the signal strip of superconducting line is found

smaller than JC and its distribution is independent of frequency

from 1 GHz to 100 GHz.

The proposed approach can easily be extended to the

structures of superconducting coplanar strips and coplanar

waveguides.

APPENDIX

The components of spectral-domain dyadic Green’s function

G for the layer structure Fig. l(c) can be derived by the method
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of [25] and [26]. Included here is a typical one such as

G.z= ‘1
2oJeo(k: + k;)

[(
x ~~/jO e–~~dy-y’l – rjoe–~~o(v+v’)

)

k: k:

–(

–~dr-v’l + r~oe–i~o(v+i)

‘Poe )1(11)

where

r’AO = (/30 – ZAl)/(PO + .zAl),

“o=(k-z’’)/(iJ+z”’)

rAl

rFl

2 = k? – k~ – k; (i = 0,1,2), kg = wzeopl),and ~a

k? = U2COAOC.(1 – j tan 8), k; = –jwo. It should be

emphasized again that the superconducting ground plane is

now regarded as a lossy layer of wave number kz, conductivity

a, and thickness b therefore the effect of lossy ground may be

discussed by this Green’s function.
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